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Biflagellate gyrotaxis in a shear flow 
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(Received 2 July 1993 and in revised form 11 June 1994) 

A flagellated, bottom-heavy micro-organism’s swimming direction in a shear flow is 
determined from a balance between the gravitational and viscous torques (gyrotaxis). 
Hitherto, the cell has been assumed to be a spheroid and the flagella have been 
neglected. Here we use resistive-force theory to calculate both the magnitude and the 
direction of a biflagellate cell’s swimming velocity and angular velocity relative to the 
fluid when there is an arbitrary linear flow far from the cell. We present an idealized 
model for the flagellar beat but, in calculating the velocity of the fluid relative to an 
element of a flagellum, the presence of the cell body is not neglected. Results are 
given for the case of a spherical cell body whose flagella beat in a vertical plane, when 
the ambient linear flow is in the same vertical plane. Results show that resistive-force 
theory can be used for organisms where the cell body has significant effect on the 
flow past the flagella and that the viscous torque on the flagella is a significant term 
in the torque balance equations. A model is presented for the calculation of a cell’s 
velocity and angular velocity in a shear flow which is valid up to high magnitudes 
of rate of strain or vorticity. The main application of the results will be to modify 
a recent continuum model for suspensions of gyrotactic micro-organisms (Pedley & 
Kessler 1990). 

1. Introduction 
Many biflagellate algal cells, from genera such as Chlamydomonas and Dunaliella, 

have a body whose shape is roughly that of a prolate spheroid, and are propelled by 
a pair of long thin flagella attached to the body at one end as sketched in figure l(a). 
The flagella perform a breast-stroke-style motion and propel the body approximately 
in the direction of its axis of symmetry. The length of a typical cell body is 10- 
15 pm while the flagella may be 20 pm long. The cell contents are asymmetrically 
distributed within the cell, so that its centre of mass is displaced towards the rear 
from the geometrical centre. Such cells are of interest not only because of their great 
abundance among the phytoplankton of oceans and lakes, where they both form part 
of the bottom link of the food chain and absorb a large proportion of ambient COz, 
nor only for their biotechnological value, but also because suspensions of them in 
the laboratory exhibit a fascinating hydrodynamic instability that leads to relatively 
large-scale (2-10mm) patterns in a process known as bioconvection (Pedley & Kessler 
1992). A knowledge of the microhydrodynamics of individual cells is an important 
stage in the development of a rational continuum model for such suspensions. 

The purpose of this paper is to analyse the swimming of a single such cell in a 
viscous fluid which is itself undergoing a general motion, with vorticity and strain 
rate in the neighbourhood of the cell. The cell is assumed also to be subjected to 
an external torque, originating in the examples of interest from the action of gravity 
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FIGURE 1. (a) Sketch of a biflagellate algal cell; p , k  are unit vectors parallel to the cell axis and 
vertically upwards respectively; h is the offset of the centre of gravity G from the geometric centre 
C. ( b )  Cell embedded in a flow containing vorticity w and strain rate E. The cell's motion is given 
by its velocity v and angular velocity Jz. 

on the cell's asymmetric mass distribution. The equilibrium orientation of a steadily 
swimming cell, represented by the unit vector p along its major axis, is determined by 
a balance between gravitational and viscous torques, and the directed locomotion that 
results is termed gyrotaxis (Kessler 1985). When the orientation is not in equilibrium, 
its rate of change p ,  the component of the cell's angular velocity perpendicular to p ,  
is still determined by the torque balance. 

The previous analyses of gyrotaxis, incorporated into the continuum models of cell 
suspensions, have assumed that the viscous torque on a cell is effectively the same as 
the viscous torque on the spheroidal body alone (Pedley, Hill & Kessler 1988; Pedley 
& Kessler 1990). Using the theory of Jeffery (1922), to calculate the torque on a 
spheroid, these authors found that 

where w ,  E are the vorticity and the strain-rate of the ambient flow respectively, k is 
a unit vector directed vertically upwards, I is the identity tensor and OLO is a measure 
of the cell's eccentricity. The constant B is the 'gyrotactic reorientation time' given by 

where p is the fluid viscosity, g is the gravitational acceleration, v, m are the cell's 
volume and mass respectively, h is the displacement of the centre of mass (CG in 
figure la) and a1 is a dimensionless number dependent on ao. 

The previous models also assumed that the beating flagella result in a constant 
swimming speed, V,, and that the swimming direction is parallel to the body axis, 
p .  In fact, the presence of the beating flagella in an ambient shear flow means that 
the swimming speed relative to the ambient fluid varies cyclically (forwards during 
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the effective stroke and backwards during the recovery stroke), that the swimming 
direction is not in general paraliel to p and, especially, that the viscous torque is 
not the same as that on the body alone. We use a microhydrodynamic analysis 
to examine the magnitude of these effects, and to determine the extent to which 
the latest continuum model (Pedley & Kessler 1990) needs to be changed as a 
result. 

We shall take a frame of reference with origin at the centre of the cell, which is 
assumed to be embedded in a general linear flow. Thus, if the cell's swimming velocity 
relative to the fluid is u, the velocity field in the fluid far from the cell will be taken 
to be 

u , = - u + + x v + E - r ,  (1.3) 

where Y is the position vector (see figure lb). The angular velocity of the cell is 0. 
The Reynolds number of the motion of the cell as well as of the flagella is small, 

so inertia is negligible. It follows that the total force and the total torque acting on 
the cell are both zero at all times during the flagellar beat. The forces are made up of 
the viscous force on the body, the viscous force on the flagella and the gravitational 
(negative buoyancy) force on the cell as a whole, and similarly for the torques. In 
fact we shall ignore the gravitational force (not torque) on the cell on the grounds 
that it is small compared with the viscous thrust/drag forces; this follows from the 
observation that the sedimentation speed of dead cells (e.g. of C. niualis) is about 
2 pm s-'while the swimming speed of live cells is about 70 pm s-l. 

The most accurate methods for computing the viscous forces and torques on the 
cell are those that are equivalent to a complete solution of the Stokes equations 
at every instant as the surface of the body-plus-flagella changes shape. The best 
developed is the boundary integral/element method of Phan-Thien, Tran-Cong & 
Ramia (1987), Ramia (1991) and Ramia, Tullock & Phan-Thien (1993), while the 
immersed boundary method has been used for two-dimensional models of swimming 
biflagellate algae (Fauci & Peskin 1988). Slender-body theory (Lighthill 1976; Higdon 
1979) gives a rational approximation to the exact solution but requires complicated 
analytical expressions for the image system of a force singularity in the cell body. 
Implementing any of these methods here would be extremely time-consuming and 
computer-intensive, and would be unlikely to yield simple formulae for the forces 
and torques (or, equivalently, for the components of the cell's velocity and angular 
velocity). 

In this paper, therefore, the viscous forces and torques on the flagella will be 
calculated using resistive-force theory (Gray & Hancock 1955) in which the normal 
and tangential components of force exerted on an element of a flagellum are taken 
to be directly proportional to the normal and tangential components of the fluid's 
velocity relative to that element. Resistive-force theory is a crude approximation of 
the true flagellar hydrodynamics, but has been shown not to give grossly inaccurate 
results if sensible choices are made of the constants of proportionality, at least for 
the swimming of spermatozoa (Lighthill 1976; Winet & Jahn 1972). 

In the analyses of spermatozoa, the relative velocity urel has been taken to be the 
difference between the far-field velocity u, (equation (1.3) or, more usually, u,1 = -u) 
and the active velocity uflag of the element of flagellum relative to the frame of 
reference. The presence of the sperm head is neglected because the sperm tail is 
very long compared with the head. In the present case, however, the flagella have a 
length comparable with the body diameter and therefore the deflection of the far-field 
velocity by the body must be taken into consideration in calculating u,,~. 
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The theoretical model is described fully in $ 2 where the deflection of the far field is 
given explicitly for a spherical body. The choice of resistance coefficients is discussed 
in Q 3. A further necessary ingredient of the model is a quantitative description of the 
pattern of the flagellar beat; 6 4 describes the observations of the three-dimensional 
beat pattern of Chlamydomonas made by Ruffer & Nultsch (1985), followed by the 
idealized planar beat pattern assumed for the present work. Implementation of the 
model for the special case in which the ambient straining motion is two-dimensional, 
the vorticity is perpendicular to the plane of the strain, and both the flagellar beat 
and the gravity vector lie in that plane, is described in detail in § 5. Results are given 
in 5 6 and the discussion in 6 7 focuses on the conditions under which the old model 
of gyrotaxis, with parallel to p and p given by equation (1.1) for some value of B, 
can be used with reasonable accuracy in a continuum model of a suspension of cells. 

2. General model 
The cell's major axis, p ,  points along the direction of the cell's propulsion; figure l(a) 

shows the body axis and the gravity axis. The geometric centre C and the centre of 
mass G lie on this axis, and the two flagella are assumed to connect to the body at a 
single point, also on the axis. The centre of mass is displaced a distance h from C. 

Because inertia is assumed to be negligible, the orientation and motion of the cell 
are given by the force and torque balances on it. The contributions to the force and 
torque are those due to ( a )  gravity and (b)  viscosity acting on the cell body and on 
the flagella respectively: 

and 
Fgrav + Fbody -k Fflag = 0 

Lgrav + Lbody + h a g  = 0. 

(2.1) 

(2.2) 
As mentioned in $ 1, observations show that the sedimentation speed of dead cells 

is much less than the swimming speed of live cells. We may therefore neglect the force 
due to gravity, Fg,,,. The gravitational couple, Lgrav, makes a significant contribution, 
however, and is given by 

(2.3) 
The sign of the couple is chosen to correspond with the geometry of the algal cells 
previously considered by Pedley & Kessler (1987). 

When calculating the contributions to the force and torque due to the body, &ody 

and Lbody  respectively, we neglect the presence of the flagella attached to the body 
and any flows produced directly by the beating flagella. The contributions are then 
the hydrodynamic force and torque on the body in Stokes flow. This is a classical 
problem for spherical and spheroidal body shapes (Kim & Karrila 1991). 

It remains to calculate the contribution to the force and torque due to the flagella, 
Faag and Lflag. We choose to use resistive force theory (Gray & Hancock 1955; 
Lighthill 1976). This says that dFflag, the viscous force exerted upon an element tds 
of a flagellum, where t is the unit vector tangential to the flagellum, is linearly related 
to the velocity of the fluid relative to the element, urel: 

(2.4) 

Lgrav = hp x mgk. 

df'flag = F { f(N(Bre1- n) n ds + KT(UA* t )  t ds), 

where n is a unit vector normal to t ,  in the same plane as u , ~  and t t ,  K N  and 

t Thus ( ~ ~ ~ 1  * n)n = urel - (ure~ . t ) t .  
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FIGURE 2. Position of an element tds of a flagellum. 

K T  are dimensionless resistance coefficients in the normal and tangential directions 
respectively and ,u is the viscosity of water (figure 2). 

In order to calculate the viscous force upon the element of the flagellum, it can 
be seen that we require the velocity of the fluid relative to the element, ur+ The 
velocity of the fluid, u, is measured at the position of the element ds assuming that 
the presence of the flagellum has no effect upon the fluid flow. For a spherical body 
in a general flow field, this is made up of three parts: the flow due to the translation 
of the body, the flow due to the vorticity of the ambient flow and the rotation of the 
body, and the flow due to any ambient straining motion. The flow past the body is 
then 

u = Utran + Urot + Ustn 

where the flow due to the translation is 

the flow due to the vorticity and rotation is 

and that due to strain is 

( LZ;) 5 ( Y - E - Y )  - ( l -$ )  a3 u s t r = E . r  1 - -  - - Y  
2 r2 r3  

where a is the radius of the cell body. 
The velocity of an element of flagellum, uflag, is given by 

uflag = n x Y + i., (2.9) 

where is the angular velocity of the body and Y is the position vector of the element 
relative to a frame of reference rotating with the body with origin at its geometric 
centre, C. The velocity of the fluid relative to the element, urel, is then given by 

urel = u - Uflag. (2.10) 
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The viscous force exerted upon the element can now be calculated and, by quadra- 
ture, the viscous force and torque on the entire flagella can also be found. This 
enables a calculation of the velocity and angular velocity of the cell to be made at 
any instant. By averaging the results over the flagellar beat, the average velocity and 
angular velocity are found. 
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3. Choice of resistance coefficients 
An important consideration in the use of resistive-force theory is the choice of the 

resistance coefficients, K N  and K T .  Two pairs of coefficients have been proposed: 
those due to Gray & Hancock (1955) and those due to Lighthill (1976). 

Gray & Hancock, in their original formulation of resistive force theory, gave the 
values of the resistive coefficients as 

and 

where q is a characteristic length indicating the range of influence exerted by a force 
acting at the element tds of a flagellum and b is the cross-sectional radius of the 
flagellum. Gray & Hancock thought that a high degree of accuracy in the choice of 
q was not important and, in applying the theory to a long spermatazoon, chose q 
equal to the flagellar wavelength, A. 

Lighthill argued that q had to be small in relation to 2 for resistive force theory 
to be more accurate. He proposed that a more realistic figure was q = 0.091 but 
found that, when this was used in the Gray & Hancock coefficients, it produced a 
ratio of swimming speed to wave propagation speed that was significantly larger than 
observed. He therefore recalculated the resistive coefficients for small q and found 
that K N  should still be given by (3.1) but K T  should be replaced by 

with q = 0.092. 
In both cases, the coefficients were formulated on the assumption that the flagellum 

was infinitely long. This is the zero-thrust case, because there is no head or body to 
provide an opposing drag, and is typical of organisms such as spermatozoa where 
the body diameter is small in comparison with the flagellar length. Johnson & 
Brokaw (1979) found that Lighthill's coefficients gave good agreement with the more 
accurate slender-body theory even in the non-zero-thrust case when the head provided 
a significant drag. 

Resistive-force theory is crude in its approximation because it takes no account 
of the interaction between neighbouring elements of the flagella. This is especially 
significant at the free ends of the flagella and close to the body. In our case, we have 
a flagellar length comparable to the body diameter; Chlamydomonas typically has a 
body diameter from 10 to 15 pm and flagellar lengths from 20 to 40 pm. In order to 
assess whether errors in the resistance coefficients are significant or not in this case, 
we compute two sets of results, one with Gray & Hancock's values and one with 
Lighthill's. 
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Another consideration is that the flagella beat in such a way that there are no 
travelling waves visibly moving down the flagella as in spermatozoa (see 4 4). Thus it 
is not clear how to calculate the flagellar wavelength. We choose to use one flagellar 
beat as one wave and arbitrarily let the flagellar wavelength be twice the flagellar 
length. The accuracy of this assumption will have to be assessed subsequently, using 
a more complete theory. 

We will show how the choice of q, b and the resistive force coefficients affects the 
up-swimming velocity of the organism. 

4. Flagellar beat model 
It will be necessary in the development of the theory to incorporate a description 

of the beat pattern of the organism's flagella. We first summarize the observations 
of Ruffer & Nultsch (1985) for a typical Chlamydomonas cell, and then describe our 
idealized model of the flagellar beat, based upon those observations. 

4.1. Observed flagellar beat 
The beating of Chlamydomonas has been described by numerous authors (Ringo 
1967; Hyams & Borissy 1978). They observe that the organism swims by using a 
breast-stroke-like beat divided into two distinct phases, the effective stroke and the 
recovery stroke. In figure 3(a) the phases are clear, though not totally distinct. In 
the effective stroke, the flagella are extended and brought from an upwards position 
back towards the body; the relative velocity is mostly normal to the flagellum. In the 
recovery stroke, a bend travels from the base to the tip of each flagellum causing the 
tip to move towards the body while returning to its initial position; in this part of 
the beat there is more tangential relative velocity. The two phases of the beat were 
observed to overlap, the effective stroke beginning before the recovery stroke had 
fully extended the flagella and the recovery stroke starting to bend the flagella before 
the effective stroke had brought them fully back. 

The effect of the beat on the motion of the cell is shown in figure 3(b). The 
body moves forwards during the effective stroke and backwards during the recovery 
stroke. The forward motion during the effective stroke is greater than the backwards 
motion during the recovery stroke, essentially because K N  exceeds K T .  The net effect 
is up-swimming, on average. Ruffer & Nultsch also observed that the two strokes 
typically take place in somewhat different planes, with some bending of parts of the 
flagella out of the beat plane. The consequence is an anti-clockwise rotation about 
the cell axis that was observed to take place entirely during the effective stroke. 

A Chlamydornonas cell typically swims in a helical path. The flagellum at the 
outer side of the helical spin was observed occasionally to increase its frequency, in 
comparison with that of the inner flagellum, for short periods of time. This transient 
acceleration was the main source of asymmetry in the beat pattern. The cells studied 
by Ruffer & Nultsch beat at frequencies between 40 and 60 Hz, and swam at speeds 
of between 100 and 200 pm s-'(maximum 240 pm s-l). The rotation rates were in 
the range 1.4 to 2.5 Hz or 9-15" per beat; asymmetries occurred about once per 20 
beats or 2 to 2.5 per rotation. 

It would be desirable to use a quantitative description of the observed beat pattern 
of figure 3 in implementing resistive-force theory. Unfortunately there is an apparent 
inconsistency in the observations which makes it difficult to do so. This is that 
the lengths of the flagella as drawn do not remain constant throughout the beat. 
It might be thought that the non-planar character of the beat could explain the 
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FIGURE 3. (a )  C. reinhardtii mutant 622E. Tracing of one beat cycle of both flagella from a 
phase-contrast, high-speed film (500 f/s). Film images were magnified 85 x .  Cell-body schematic. 
Figures are frame numbers. Bar = 5 pm. Reproduced with permission from Ruffer & Nultsch 
(1985). ( b )  Position of another cell during three beats. The solid line marks the cell at the end 
of the forward motion, the dashed line at the end of the backward motion. For the last beat, the 
position of the flagellum at the beginning of the effective (dashed line) and recovery stroke (solid 
line) is given. Arrows indicate direction and magnitude of movement. Reproduced with permission 
from Ruffer & Nultsch (1985). 

anomaly, because only a planar projection of the flagella can be drawn at any instant. 
However, the apparent length changes are too great to be accounted for in this way, 
given the rather small out-of-plane component of the observed beat. Various ways 
of adjusting the data can be thought of, such as scaling the measured positions of 
points on a flagellum by instantaneous recorded length, but they are all essentially 
arbitrary and would give a spurious biological verisimilitude to the results of our 
model. Instead, we have devised and used a highly idealized model of the flagellar 
beat in computing our results, as described below. 

4.2. Idealized flagellar beat model 
We assume that the flagella beat symmetrically in a plane containing the longitudinal 
body axis. We do not allow for any rotation about the body axis nor model the 
helical swimming path. We also assume that the effective and recovery strokes are 
distinct. The model beat starts with the flagella fully extended parallel to the body 
axis (figure 4a: flagella position 1). For the effective stroke, the flagella rotate rigidly 
about their base (0, in figure 4a) until perpendicular to the body axis. The angular 
velocity of each flagellum about 0 is taken to be constant throughout the motion. 
The angle between the flagellum and the body axis p at any stage is denoted by 2. 
The other flagellum beats symmetrically. 

During the recovery stroke, the bending waves propagate up the flagellum from 
the base to the tip: with reference to figure 4(b), the propagation point P is taken to 
travel in the direction of the body axis, restoring the flagellum to the initial position. 
The flagellum bends sharply as the wave moves up the axis at a constant speed w. 
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FIGURE 4. ( a )  Idealized effective stroke of one flagellum. Numbers follow the sequence of flagellar 
positions. A typical element is shown on the flagellum with normal and tangential vectors n,t .  ( b )  
Idealized recovery stroke. The point P propagates along the line of the cell axis with speed w. 

We model the changing angle x between the flagellum and the body axis during the 
recovery stroke in one of two ways: 

(a) the angle decreases at a constant angular velocity; 
(b)  the angle is calculated in such a way that the moment about the bending point 

of the viscous forces acting on the dependent part of the flagellum is zero. 
We assume that the beat pattern described above is unchanged by any changes in the 
ambient flow. 

5. Single plane model 
Following the specification of the flagellar beat, all the assumptions can be incor- 

porated into the general model. For simplicity, we restrict the calculation of results 
to a uniplanar case. That is, within the ambient flow, the vorticity is perpendicular 
to the plane of the strain rate. The flagellar beat plane will coincide with the plane 
of the strain rate and gravity will also act wholly within that plane (figure 5). In a 
suitable coordinate system, therefore, we can write 

E = b  ;e 0 W), a=(!), g = - g , c = ( I : ; i ) ,  p = ( Z t : ) .  

(5.1) 

(5.2) 

Within the coordinate system described above, the gravitational torque becomes 

Lgrav = mgh sin(8 - y )  e3, 

where e3 is a unit vector in the direction perpendicular to the flow plane (out of the 
page in figure 5) ,  8 is the angle of the body axis relative to the negative strain rate 
axis and y is the angle of the upward vertical relative to this strain axis. 
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FIGURE 5. The uniplanar model. The body axes p and q, the strain axes ei and gravity axis k 
(vertically upwards) all lie in the same plane. 0 is the angle of the body axis relative to the negative 
strain rate axis and y is the angle of the upwards vertical relative to this strain axis. 

Our assumption that the body is spherical in shape means that the viscous force 
and torque upon the body, &ody and Lbody, are well known: 

Fbody = -6npav, (5.3) 

Lbody = -8npa3(n - im). (5.4) 
The velocity field for a general linear flow past a spherical body was given in 9 2 

above. To find the relative velocity of the fluid over the element tds, it remains 
to define the position vector Y and the velocity r of the element, relative to the cell, 
during both the effective and the recovery stroke. For future reference, it is convenient 
to specify both these vectors and n and t (equation (2.4)) in terms of unit vectors p, q 
fixed in the cell (see figures 4 and 5). 

The unit vectors normal and tangential to an element on the right-hand flagellum 
are given by 

n=sinXp-cosxq 

and 
(5.5) 

t =cosXp+sinXq. (5.6) 
The position of an element on the right flagellum relative to the centre of the cell 

during the effective stroke is given by 

Y = u p  + s t = (a + s c o s ~ ) p  + ssinxq, (5-7) 

where x is the angle between the flagellum and the body axis p (see figure 4a). During 
the effective stroke the element moves through a right angle in time T,. The angular 
velocity of the flagellum is then given by 
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The velocity of the flagellar element is then given by 

i-=-sksinxp+skcosxq. (5.9) 

To obtain corresponding vectors for an element on the left flagellum, change the 
angle x to -x. 

During the recovery stroke, a bending wave propagates up the length of the 
flagellum, 1, at a constant velocity, w say. Thus, the recovery stroke takes w / l  seconds 
to occur. We consider the recovery stroke in two parts: the section parallel to the 
body axis p and the section changing angle and retreating towards the body axis 
(figure 4b). The position of an element on the right flagellum in the section parallel 
to the body axis is given by 

r = ( a + s ) p  (5.10) 
with t = p and n = -4. The straight section is of length wt where wt  < 1. This 
element is stationary with respect to the centre of the organism 0. The position of 
an element in the angled segment on the right flagellum is given by 

(5.1 1) 

where i7~ < x < 7~ and t = 0 is taken at the start of the recovery stroke. The velocity 
of the flagellum is then given by 

(5.12) 

The angular velocity of the flagellum is calculated in one of two ways. If we assume 
that the angle decreases with constant angular velocity during the stroke and that the 
flagellum bends through a right angle, it thus has angular velocity 

r = (a  + wt) p + (s - wt) t = [a + wt  + (s - wt) cos x] p + (s - wt) sin x q, 

r = [w(l - c o s ~ ) - ( s - w t ) ~ s i n ~ ] p +  [-wsinx+(s- wt)kcosx] q. 

7CW 
; I = Z a .  (5.13) 

In the second model for the flagellar angular velocity, we calculate the moment of 
viscous forces about the bending point, by using resistive-force theory and ignoring 
the presence of the cell body (Appendix A). The angular velocity of the flagellum is 
then chosen to give zero moment. The resulting equation for the angular velocity is 

. 3 wsinx x =  -~ 

2 (1 - wt)’ 
(5.14) 

The results of using both methods will be given. 
It can now be seen that the time taken for the effective stroke is given by 

W 
T , = T - - - ,  (5.15) 

where T is the total time for one beat. Time, though, merely acts as a parameter 
within the model. The amount of time taken by the effective stroke in comparison 
with the recovery stroke has no effect upon the average velocity and angular velocity 
of the organism if the total time for one beat remains constant. This is a consequence 
of the zero Reynolds-number-flow assumption. 

To obtain the total force and torque upon each flagellum it is necessary to integrate 
(2.4) and its vector product with r,  incorporating (2.5) to (3.1) with either (3.2) or 
(3.3) and using (5.5) and (5.6), along the flagellum from the base to the tip; s = 0 to 
s = 1. For the effective stroke, a simple integration is required for each term, while 
for the recovery stroke, a choice of (5.13) or (5.14) for use in (5.12) will be necessary 
along with two integrals, from 0 to w t  and from w t  to 1. 

1 
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in our uniplanar system to three simultaneous equations in three unknowns : 
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Finally, the vector equations for the total force and torque, (2.1) and (2.2), reduce 

alup + azecos(28) = a3, (5.16) 

a414 + a5(8 + w/2) + age sin(28) = 0, 

a7uq + aX(8 + w/2) + age sin(20) = -mgh sin(8 - y ) ,  (5.18) 

where up and uq are the components of the organism's translational velocity parallel 
and perpendicular to the body axis p respectively, 8 is the angular velocity of the 
organism, and al to a9 are dimensional, time-dependent coefficients that depend only 
on the parameters of the flagellar beat.? The variables up,uy and 8 are the unknowns 
in the equations which may be solved at any time throughout the beat. The results 
are then integrated with respect to time to give V and a, the average velocity and 
average angular velocity of the organism over the beat. 

From (5.16), it can be seen that the velocity of the organism in the primary body 
direction, up, is uncoupled from the equations for the transverse velocity and the 
angular velocity. This is an expected consequence of the planar flagellar beat since 
contributions to the torque equation from a force acting in the direction of motion 
upon identically beating flagella produce identical contributions but of opposite sign, 
resulting in zero net effect. A force acting perpendicular to the direction of motion 
will produce identical contributions on two flagella but of the same sign, resulting in 
the appearance of the uq term in the viscous torque equation. 

During the calculation of the results, we have assumed that, although 6 is often 
non-zero, the angle 8 is constant throughout the beat. From (5.17) and (5.18), it is 
possible to solve for the angular velocity explicitly: 

(5.17) 

and 

8 = -0/2 - ( - esin(28) + ( a4 ) rnghsin(0 - y). (5.19) 
a5a7 - a4aS a5a7 - a4aX 

Solution of this differential equation will show how the angle 0, and hence (0 - y), 
changes throughout the beat, and we shall be able to identify the conditions under 
which this change can be neglected. Moreover, the time-dependent coefficients are 
laborious to calculate at each time step. We shall therefore also examine the accuracy 
of replacing them by their average values in the calculation of the velocity and angular 
velocity. 

In the case of zero strain rate, the angles 0 and y are not defined and it is the angle 
between p and k,  say p, that should be considered and should replace 0 - y in the last 
term of (5.19) (see figure 5) .  Equation (5.19) is analogous in our model to the angular 
velocity equation found by Pedley & Kessler (1987) for a spheroidal cell without 
flagella ((1.1) above). The inclusion of the flagellar torque causes the coefficients of 
strain and gravity to be more complicated than the quantities a. and B which they 
replace. Though the new equation as yet lacks three-dimensional generality, it will 
improve the calculation of the angular velocity of the organism through the inclusion 
of the torque due to the flagellar beat. In particular, the ambient strain rate, e, which 
has no effect on a spherical cell body, does have an influence on a flagellated cell 
even when its body is spherical. 

t The expressions defining them are lengthy and of no intrinsic interest; a list has been deposited 
in the JFM editorial office. 
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Any cell Chlamydomonas 

Cell diameter 2-500 pm 4-20 pm 
Flagellar length 5-200 pm 4-20 pm 
Flagellar diameter 0.2 pm 
Beat frequency 5-100 HZ 4G60 Hz 
Cell density 1.01-1.10 g cmp3 
Centre of gravity offset 
Swimming speed 10-500 pm s-l &200 pm s-' 

0-0.05 body diameters 

TABLE 1 

Standard value 
used here 

10 pm 
10 pm 

0.2 pm 
50 Hz 

0.1 pm 
1.05 g cm-3 

To be calculated 

6. Results 
Firstly, we estimate the model parameters, using published data, and then we 

calibrate the model by comparing its prediction for pure up-swimming in a still fluid 
to the observations of Ruffer & Nultsch (1985). Then, the model is used to predict 
the angular velocity of the organism in other conditions. 

6.1. Typical data values 
Table 1 gives typical data ranges for arbitrary flagellated cells from Holwill (1982), 
for Chlamydomonas from Kessler (1986), and the standard values used in obtaining 
the results which follow; other values will also be used to test the model's sensitivity 
to the parameters. 

The majority of results are given in non-dimensional form. The characteristic length 
scale is the body diameter and the characteristic time scale is the time for one beat. 
Velocities consequently are given in terms of body diameters per beat. Specific results 
have been dimensioned to give comparisons with the data in the table. 

6.2. Vertical up-swimming 
Comparison between the model and experimental observation is easiest in the case 
of vertical up-swimming. That is, Chlamydomonas reinhardtii have been observed 
swimming vertically upwards (on average) and measurements of their mean upward 
velocity have been taken (Ruffer & Nultsch 1985). This is somewhat different from 
the mean speed at which cells swim relative to the suspending medium, because their 
swimming direction is randomly distributed; this too has been measured, at least for 
C. nivalis (Kessler, Hill & Hader 1992). In our model, pure up-swimming corresponds 
to the organism swimming in a stationary flow field, one without vorticity or strain 
rate or gravitational torque. 

6.2.1. Comparison of resistance coeficients 
It was seen in $3 that the resistance coefficients, K N  and K T  depend on the ratio 

between the length, I, of the flagellum and its radius, b. Thus, in figure 6, the abscissa, 
K N / K T ,  is a function of l /b .  The different curves on the graph are for different values 
of the flagellar length which has been non-dimensionalized by the body diameter. 
Thus, for any organism, if the ratios of flagellar length to body diameter and flagellar 
radius to flagellar length are known then the predicted vertical up-swimming velocity 
is shown. 

For Chlamydornonas, the flagellar thickness is about 0.02 of the flagellar length 
and the flagellar length is approximately equal to the body diameter. Using Gray 
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FIGURE 6. Up-swimming speed plotted against K N / K T  for varying flagella lengths ( 1  = 2a (bottom), 
3a,4a (top), where a is the body radius). Dashed lines are speeds found using Lighthill's (1976) 
coefficients, the solid lines those using Gray & Hancock's (1955) coefficients. Flagellar thickness 
increases as K N / K T  + 0. The cross marks the speed for the parameter values of our chosen 
organism. 

& Hancock's coefficients, we predict a velocity of 0.06 body diameters per beat or 
31 pm s-'if the body diameter is 10 pm and the organism beats at a frequency of 
50 SKI. On the other hand, using Lighthill's coefficients, we predict a velocity of 0.10 
body diameters per beat or 50 pm s-'. 

Both these values are in the range of observed swimming speeds, as seen in table 1. 
Johnson & Brokaw (1979) found that Lighthill's coefficients gave better agreement 
with slender-body theory when the body-to-flagellar length ratio is comparable. As 
this is the case in this model, we choose to use Lighthill's coefficients in deriving the 
remainder of the results, i.e. KN = 3.7 and KT = 2.2. 

6.2.2. Velocity variation during the beat 
Figure 7 shows how the velocity of the organism is predicted to change over the beat. 

In the first part of the beat, the organism is performing the effective stroke. It swims 
forward with increasing velocity as the stroke progresses. At the end of the stroke 
there is a distinct change from effective to recovery stroke causing a discontinuity 
in the velocity. During the recovery stroke, the organism swims backwards with an 
approximately constant but smaller velocity. A small minimum is seen in the velocity 
at the point where the furthest extent of the flagella is closest to the cell body. 

The velocities in the recovery stroke have been calculated in two different ways, 
as stated before : assuming the angular velocity for zero-moment or constant angular 
velocity. It can be seen that, though the backwards velocity is initially greater, the 
zero-moment angular velocity model results in a slightly smaller backwards velocity 
than the constant angular velocity model throughout the majority of the recovery 
stroke, and hence in a smaller net backwards displacement. 
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-1.0 

FIGURE 7. Variation in up-swimming speed during one flagellar beat. Discontinuity occurs at 
changeover between effective stroke (v > 0) and recovery stroke (v < 0). Solid line in recovery 
stroke shows the result of using the zero-moment method of calculating flagellar angular velocity. 

An organism with flagellar length equal to body diameter was found to swim 
upwards for a distance of about 0.33 body diameters in the effective stroke and to 
regress about 0.23 body diameters during the recovery stroke. This gives an average 
swimming velocity of 0.10 body diameters per beat. When comparing the two methods 
described for the recovery stroke, the zero-moment angular velocity model gave an 
average swimming velocity of 0.10 body diameters per beat and the constant angular 
velocity method gave the average swimming speed as 0.09 body diameters per beat. 

In the following results, the zero-moment model will be used throughout. 

6.3. Calculation of angular velocity 
The main application of a model such as this will be in the calculation of angular 
velocity for use in a continuum model of a suspension of cells. We thus consider 
the new model's predictions for angular velocities, and compare them with the earlier 
predictions of Pedley & Kessler (1987) which ignored the presence of the flagella. 

6.3.1. Gravitational torque only 
Assuming no ambient flow, then if the organism is swimming at an angle p to 

gravity, equivalent to 6 - y in (5.19), there will exist a re-orientating torque due 
to gravity only. The viscous torque on the body and the flagella will balance the 
gravitational torque opposing the angular velocity ). The inclusion of the flagella 
will enhance the magnitude of this viscous torque and will therefore result in a lower 
value for the angular velocity than an equation excluding them. Figure 8 shows the 
difference. The results were calculated for flagellar length equal to the body diameter. 
The angular velocity values obtained by including the flagellar torque are 50% lower 
than without it. This is a significant difference which may partly be explained by 
the choice of an idealized flagellar beat pattern. We feel, though, that the flagellar 
torque, whichever form the beat pattern takes, will be a significant term affecting the 
calculation of the angular velocity. 
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FIGURE 8. Plots of angular velocity driven by gravitational torque only, against gravity angle. 
showing the effects of neglecting the flagella. 

In order to decide whether it is valid to neglect the variation in p during the beat, 
when calculating b, a tolerance was decided upon. If the maximum change in p is 
less than this, we consider the calculation to be accurate. 

Equation (5.19) (with co = e = 0 and j3 = 6' - y) was solved numerically for P(t)  
using a fourth-order Runge-Kutta scheme. The integration was performed in two 
ways: (a )  using the instantaneous values for the time dependent coefficients and (b )  
by an approximate method in which the average values for the coefficients were used. 
If sufficiently accurate this may provide an efficient approximation in cases when it 
is not valid to neglect the variation of p or 6 during a beat. Figure 9 shows how, 
over one beat, the angle p changes under the influence of a gravitational torque 
only, when the value of j3 in the equation was take to be 40". The use of average 
values for the time-dependent coefficients instead of the full calculations shows the 
greatest difference at the changeover from effective to recovery stroke but agreement is 
generally good throughout the beat. Despite (5.19) being nonlinear, use of the average 
values for the coefficients leads to a very accurate estimate of average angular velocity 
(equivalent to the total angular displacement in one beat). 

For a 40" displacement from gravity, the angle moves to 39.7" at the end of one 
beat for the parameter values chosen here, so neglect of this variation is certainly 
justified. 

6.3.2. Shear $ow 

We have examined the assumption that the angle between the body axis and a 
fixed axis (gravity) remains constant throughout the beat when the only torque acting 
is gravitational. We found that the deviation was small over the beat. 

Now, we examine the rotation of the organism for more complicated flows involv- 
ing both rate of strain and vorticity. We define a new notation for the coefficient 
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FIGURE 9. Change in orientation angle during one beat. Gravity acting at 40" (b = 40" at t = 0). 
Straight line shows the effect of using average values for the time-dependent coefficients. 

functions in (5.19) as 

and 

Note that i is non-dimensional while q has units of kg-'m-2s and both are positive- 
valued functions. Then (5.19) becomes 

4 = --;a + ( e  sin(28) - qmgh sin(8 - y ) .  (6.3) 

The previous results show that it is accurate to replace q by its average value q. 
We can use this to calculate a critical value for the vorticity, IwI, below which the 
change in 8 during the beat may be neglected. If the organism was placed in a flow 
containing only vorticity, e = 0, and was swimming horizontally, with /? = so that 
the gravitational torque is maximal and in the same sense as the viscous torque for 
w > 0 (see figure 5), then putting 6 = in (6.3) gives the maximum permissible 
value of the vorticity: 

w,,, = 2(4,,, + qmgh). (6.4) 
We decided arbitrarily that an angular displacement of 5 "  (0.087 rad) per beat 

was the maximum tolerable variation in 8. For the specification of the organism 
described above, ijrngh = 0.008. Hence, this gives the maximum vorticity allowable as 

A different simplification is possible when 101 exceeds the allowable value, for then 
the term -w/2 dominates the other terms on the right-hand side of (6.3), and, to a 
good approximation, the cell rotates with the ambient fluid. In such a vigorous flow, 
the details of how the organism swims are likely to be unimportant. 

amax = 9.5 s-l. 
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FIGURE 10. Change in orientation angle O during one beat. Pure straining motion (e  = 10s-I) 
initially acting at 40"O = 40" at t = 0) with no gravitational torque (0 - y = 0 at t = 0). Straight 
line shows the effect of using the average values for the time-dependent coefficients. 

At this stage, we can perform a similar analysis for pure straining flow. If there 
was no vorticity acting, w = 0, and initially the organism was swimming vertically 
upwards, 8 - y = 0, then the major influence upon the orientation of the organism 
would be the rate of strain. Figure 10 shows how, over one beat, the angle 8 changes 
in the situation described above. Equation (6.3) was solved numerically using the 
instantaneous values of q and [ and using their average values, f j  and 4 respectively. 
Unlike the gravitational case, the organism exhibits a large angular variation during 
one beat. The average value, while not being as accurate within the beat, does give a 
good approximation for the total angular displacement in one beat. With 8 initially 
40' and e = 10 s-l, after one beat 8 has moved to 40.4'. The average angular velocity 
is very small, about 5's-' for a strain rate of 10 s-l, with the difference between 
using the instantaneous value or the average value being small up to extremely large 
values of the rate of strain. 

So, we cannot use the average value if we wish to examine the variation within a 
beat but may use the average value if the mechanics of the beat are not important. 
In most applications, the organism will be placed in a flow in which the rate of strain 
is of comparable size to the vorticity. 

We can calculate a similar maximum value of the rate of strain for which the 
model holds. The maximum value of the rate of strain occurs when 8 = in. If we 
ignore any vorticity (a = 0), assume that gravity is acting with maximum effect in 
the same direction as the rate of strain (y = -8), then putting $ = -emax again gives 
the maximum allowable rate of strain, 
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Hence substituting for qmgh and emax as before and with 4 = 0.09 for our typical 
organism, we obtain a maximum rate of strain of emax = 52 s-l. 

Note that since we have assumed that the organism’s body is spherical, the rate of 
strain exerts a torque only upon the flagella. This torque is considerably smaller than 
that exerted by a comparable vorticity on the body. We expect the effect of the strain 
to be considerably greater on a spheroidal body. 

7. Discussion 
Previous papers have shown that resistive-force theory can be used to calculate a 

spermatazoon’s velocity accurately when the cell body is ignored. In this paper, we 
have incorporated the body into the model by considering its influence on the flow 
past the flagella, and have thereby been able to model an organism for which the 
flagellar length is comparable to the body length. We also included the flagellar torque 
in the torque balance equation and provided an idealized model for the flagellar beat. 

Despite the reservations about the use of resistive-force theory, the model shows 
good qualitative agreement with observation in its calculation of swimming velocity. 
It does show also that the flagellar torque can have a significant effect upon the 
angular velocity, which can be significantly over-estimated if the flagella are ignored. 
When calculating the angular velocity, the time dependence of the beat coefficients 
would make the use of our method laborious, but we have shown that using the 
average values of these coefficients, (6.1)-(6.2), is sufficiently accurate. 

The average values of the time-dependent beat coefficients were shown to be very 
accurate in the case of gravitational torque. For pure straining flow, however, the 
flagellar beat is highly important since there will be no effect upon the spherical body 
and the strain acts entirely through the flagella. Though the average values may also 
be used in this case, the change in the angular displacement during straining flow was 
shown to be more variable over the beat than during gravitational torque. 

We have also shown that the assumption that the organism’s orientation does not 
change significantly during one beat is valid up to a maximum value of vorticity or 
rate of strain (in our case, with a spherical body, the effect of the vorticity in the 
ambient flow is much greater than that of the strain rate). However, if the organism 
is rotating too rapidly for the orientation to be assumed constant over one beat, it is 
unlikely that the details of the organism’s swimming will be important anyway. 

As stated earlier, Pedley & Kessler’s (1992) general equation for the angular velocity 
of an organism in a shear flow, (l.l), is analogous, in the case described above, to 
(5.19). We can carry this analogy over to the definition of the constants in the two 
equations. Comparisons show that the cell’s eccentricity parameter rn (in Pedley & 
Kessler’s notation) is, in the new equation, given by 

- 

a0 = 4,. (7.1) 

In addition, defining qL to be a non-dimensional q t, the gravitational re-orientation 
time becomes 

3 P  
8xij * mg h 

B =  (7.2) 

t Non-dimensionalization: q = q ’ / p a 3  = 4nqb/3pv using the assumption that the body is 
spherical. 
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so that Pedley & Kessler’s coefficient CII is given by 
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(7.3) 
3 

C I I  = -. 

Substitution of the new values into the existing equation will therefore improve the 
continuum models, which are based on these equations, for the cases in which the 
new values are valid, i.e. in which the cells are not rotating too rapidly. 

Using the idealized beat pattern of 0 4.2 with the typical organism dimensions given 
in table 1, we obtain 4 = Uo = 0.09 and q* = 0.019, so a.L = 12.6. 

The value of a. chosen by Pedley & Kesler (1990) was 0.31, based on visual 
examination of dead cells under a microscope. The cell bodies were taken to be 
spheroidal with no flagella. Our value was based upon a spherical cell body (for 
which ao = 0) with flagella. The results suggest that the value of ao for a spheroidal 
cell with flagella would approach the sum of the two previous values, i.e. 0.40; we are 
performing a more detailed calculation to confirm this. 

The corresponding value of C I ~ ,  for spheroidal cells with a. = 0.31, is 6.8, leading 
to a gyrotactic reorientation time ( B )  of 3.4 s (Pedley & Kessler 1990). Our value of 
12.6 gives B = 6.3 s. The slower reorientation is not surprising because the flagellar 
torque acts as an extra brake on the angular velocity of the organism. This means 
that, while the organism rotates more slowly than predicted by ignoring the presence 
of the flagella, it is more resistant to any large impulses that may influence it through 
the far-field flow. Any large vorticity or rate of strain that act for a short period of 
time on the organism would result in a lower angular velocity, and hence a lower 
angular deviation from the organism’s preferred path, than one would suppose when 
modelling the organism without the flagella. 

The analysis of this paper is a first step. Spheroidal bodies and three-dimensional 
flows will be considered in subsequent papers leading to a description of the motion 
of a general biflagellate organism beating in a general flow. 
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Appendix. Calculation of zero-moment angle 
A cell is performing the recovery stroke (figure 7). A point on the flagellum, P, is 

travelling in the body direction, p, with constant velocity w. We take t = 0 at the 
start of the recovery stroke. At time t, points on the flagellum below P (s < w t )  are 
in their initial position for the start of the effective stroke and so have ceased moving 
with respect to P. Points on the flagellum above P ( s  > wt)  are rotating with angular 
velocity, 2 about P as they retreat back to their initial point for the effective stroke. 
A point on the flagellum above P has a position vector Y given by (5.11). 

At this stage, we use resistive-force theory, (2.4), to calculate the viscous force 
acting on the element tds of the flagellum at the point Y, and hence the viscous torque 
about the point P, for the case where the only motion is the beating of the flagella. 
That is, we neglect the fluid flow and the presence of the cell body, and set urel = -i, 
given by (5.12). For the calculation of the torque, only the normal component of ureI 
is required, i.e. 

(i. - n) = -(s - wt)k + w sin x, (A 1) 
since n is given in terms of p and q by (5.5). 
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The total normal moment about P, M,,, from all the elements with s > wt  is given 
by 

I 

M,, = l t ( F  - n)(s - wt)ds (A 2) 

or 
I 

KN(-(s  - wt)k + w sin x)(s  - wt)ds. (A 3) 
Mn = .I, 

Integrating and then setting M,, = 0 gives 

. 3 w sin2 x =  -~ 

2 (1  - wt)’ 

which is positive. Hence, k is the angular velocity of the flagellum about the pivot 
point P such that the moment in the normal plane is zero. 

Note that (A4) can be integrated to give 

which indeed starts at x = ;rc when t = 0, and finishes at x = .n when t = l / w ,  just 
as in the constant angular velocity case. 
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